Variant functional approximations for latent Gaussian models
نویسندگان
چکیده
The integrated nested Laplace approximation (INLA) [Rue et al., 2009] is now a well-known functional approximation algorithm for implementing Bayesian inference in latent Gaussian models but has some limitations: it is unable to handle a high dimensional model parameter θ, and makes a poor approximation when the posterior is multi-modal and the likelihood is highly nonGaussian. Two types of algorithm are proposed to address these limitations: (a) a combination of INLA and Monte Carlo methods and (b) analytic approximations with higher order moments. We test the performance of algorithms on a nonlinear stochastic velocity model for exchange current rate data between Euros and Dollars and a factor analysis model with both synthetic datasets and real data from multi-spectral extra-terrestrial microwave maps.
منابع مشابه
Spatial Latent Gaussian Models: Application to House Prices Data in Tehran City
Latent Gaussian models are flexible models that are applied in several statistical applications. When posterior marginals or full conditional distributions in hierarchical Bayesian inference from these models are not available in closed form, Markov chain Monte Carlo methods are implemented. The component dependence of the latent field usually causes increase in computational time and divergenc...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملApproximate Bayesian Inference for Latent Gaussian Models Using Integrated Nested Laplace Approximations
Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalised) linear models, (generalised) additive models, smoothing-spline models, state-space models, semiparametric regression, spatial and spatio-temporal models, log-Gaussian Cox-processes, and geostatistical models. In this paper we consider app...
متن کاملNORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Approximate Bayesian Inference for Latent Gaussian Models Using Integrated Nested Laplace Approximations
We are concerned with Bayesian inference for latent Gaussian models, that is models involving a Gaussian latent field (in a broad sense), controlled by few parameters. This is perhaps the class of models most commonly encountered in applications: the latent Gaussian field can represent, for instance, a mix of smoothing splines or smooth curves, temporal and spatial processes. Hence, popular smo...
متن کاملApproximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalized) linear models, (generalized) additive models, smoothing spline models, state space models, semiparametric regression, spatial and spatiotemporal models, log-Gaussian Cox processes and geostatistical and geoadditive models. We consider app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011